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ABSTRACT

Trends of extreme precipitation (EP) using various combinations of average return intervals (ARIs) of 1, 2,

5, 10, and 20 years with durations of 1, 2, 5, 10, 20, and 30 days were calculated regionally across the contiguous

United States. Changes in the sign of the trend of EP vary by region as well as by ARI and duration, despite

the statistically significant upward trends for all combinations of EP thresholds when area averaged across the

contiguous United States. Spatially, there is a pronounced east-to-west gradient in the trends of the EP with

strong upward trends east of the RockyMountains. In general, upward trends are larger and more significant

for longer ARIs, but the contribution to the trend in total seasonal and annual precipitation is significantly

larger for shorter ARIs because they occur more frequently. Across much of the contiguous United States,

upward trends of warm-season EP are substantially larger than those for the cold season and have a sub-

stantially greater effect on the annual trend in total precipitation. This result occurs even in areas where the

total precipitation is nearly evenly divided between the cold and warm seasons. When compared with short-

duration events, long-duration events—for example, 30 days—contribute the most to annual trends. Co-

incident statistically significant upward trends of EP and precipitable water (PW) occur in many regions,

especially during the warm season. Increases in PW are likely to be one of several factors responsible for the

increase in EP (and average total precipitation) observed in many areas across the contiguous United States.

1. Introduction

Extreme precipitation events have played a major

role in many national catastrophes and continue to be

a chronic problem. They have been a driving factor in

major socioeconomic losses including property damage

and loss of life. For example, NOAA (2017) reports

that since 1980 more than 1 trillion dollars in insured

and uninsured property losses occurred from U.S. di-

sasters with roughly 75% arising from flooding, tropical

cyclones, and severe local storms, all of which are ac-

companied by extremes of precipitation (NOAA 2017).

The American Society of Civil Engineers (2016) esti-

mates that trillions of dollars will be needed by 2025 to

replace aging infrastructure in the United States, and

of particular interest will be the design standards that

are most appropriate. Loss of life has also accompa-

nied excessive precipitation as floods resulted in over

4500 deaths in the United States between 1959 and

2005 (Ashley and Ashley 2008). Furthermore, extreme

precipitation is associated with soil erosion and related

environmental and ecological damages from soil degra-

dation and water pollution (Soil andWater Conservation

Society 2003). There is no doubt that extreme precip-

itation can be costly in terms of human safety and

welfare, damages to housing and infrastructure, and

environmental and ecological degradation.

Extreme precipitation-induced flooding spans across

various time durations, from short-duration subdaily

events to longer multiweek duration extreme precip-

itation totals. For example, the flood of 1993 was one

of the worst disasters ever experienced in the central

United States with an estimated $18 billion in damages to
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property, agriculture, transportation, and other sectors. A

single sector, the U.S. railroad industry, suffered physical

damages amounting to $282 million (2005 dollars) and

lost revenues of $198 million (Changnon 2006). The 1993

event was associated with a prolongedmultimonth period

of excessive precipitation in the central United States.

Other events have been ofmuch shorter duration, like the

recent notable flood that affected the southeast United

States in October 2016 from Hurricane Matthew’s rain-

fall. The historicHouston, Texas, flooding associatedwith

Hurricane Harvey in 2017 produced 2- and 3-day pre-

cipitation totals of 750mm or more and weekly totals in

excess of 1000mm (Kunkel and Champion 2019). Sub-

daily extreme precipitation events, often manifesting as

flash-flood events, can also lead to catastrophic impacts

and loss of life.

Given the practical significance of these extreme

precipitation events, it is not surprising that the sci-

entific, engineering, and planning communities across

the United States have devoted considerable atten-

tion assessing whether these events are changing in

frequency and intensity (Melillo et al. 2014; Wuebbles

et al. 2017). These assessments have in part relied on

a number of studies ofU.S. precipitation that have found

an upward trend in heavy events (Karl and Knight 1998;

Groisman et al. 2005; Walsh et al. 2014). On the basis of

one particular extremes metric (2-day precipitation

totals exceeding a threshold for an average recurrence

interval of 1 in 5 years), the greatest increases have

been in the upper Great Plains, Midwest, and Northeast

where increases are 30% above the 1901–60 average

(Walsh et al. 2014). Coincidently, there have been more

flooding events in the Midwest and Northeast where

the largest increases in extreme rainfall have occurred

(Melillo et al. 2014). In many areas of the world heavy

rainfall events are becoming more intense and more

frequent and the amount of rainfall in extreme events

has been increasing (IPCC 2013). Considering the effects

of a warmer world, increased urbanization, continued

development in floodplains and coastal areas, and

land-use changes, the risks of increased future floods

are significant (Doocy et al. 2013).

Typically, studies of the trends in extreme precipita-

tion trends have used a single definition, or just a few

metrics for extreme precipitation. Quantitative com-

parison across studies is difficult or infeasible because

of the differences in definitions. Kunkel and Frankson

(2015) examined trends in four different metrics of ex-

treme precipitation and generally found upward trends

over the United States in all of the metrics, but they did

not quantify the trends. Surprisingly, no studies have

documented regional changes of precipitation extremes

in theUnited States across a wide range of durations and

return intervals. Karl and Knight (1998) did show that

about one-half of the total daily precipitation in the

United States falls in the upper 10th percentile of pre-

cipitation events and that these events are increasing,

but what this looks like in rarer precipitation events,

seasonally and regionally, remains to be explored. So,

for this analysis, the magnitude of the trends of region-

ally averaged extreme precipitation events is explored

for various average return intervals (ARIs) and dura-

tions throughout the year as well as for the warm (May–

October) and cold seasons (November–April). This

also includes the contribution to the trend of average

precipitation P.

Most important is that confidence in future changes

in extreme precipitation frequency and intensity is de-

pendent on understanding the driving factors of ob-

served increases. Integrated column atmospheric water

vapor, that is, precipitable water (PW), is known to be

an important consideration in probable maximum pre-

cipitation computations (Kunkel et al. 2013). It has yet

to be demonstrated, however, that observed trends in

extreme precipitation events (EP) are related to trends

in PW. In this analysis the regional trends of extreme

precipitation are evaluated for a variety of ARIs and

durations for the warm and cold seasons as related to

trends in PW and P.

2. Data and method

a. Precipitation

Daily precipitation values were obtained from the

Global Historical Climate Network—Daily (GHCN-D;

Menne et al. 2012). GHCN-D undergoes a rigorous and

robust quality control process (Durre et al. 2008, 2010)

that results in suspicious data being flagged for various

errors. If a daily precipitation value fails any of the 14

automated quality checks except for the ‘‘duplicate

check,’’ it is not used. The duplicate check looks for

the duplication of sequences of data in different time

periods. For example, two different months in the same

year having identical values. These types of problems

usually occur because of keying, transmission, or pro-

cessing errors (Kunkel et al. 1998). Observations that

failed the duplicate check were investigated, and the

correct series of values were used and the truly dupli-

cate series of values were not used.

To ensure a uniform analysis across the contiguous

United States and to ensure robust results, rather

stringent missing data criteria were applied to select

stations for analysis. The period of analysis is 1949–

2016, which encompasses the time period of recent

extreme-event increases documented in other studies

(e.g., Walsh et al. 2014). Specifically, stations used in
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the analysis had to be at least 90% complete (less than

10%missing daily values) during the 1949–2016 period.

Once stations were selected based on this criterion,

another criterion was applied in regional aggregations

of the station analyses. For a station to be included in

the annual value of a regional time series for a partic-

ular year, the station had to have at least 300 days with

valid precipitation data for any given year. One last

criterion was applied to specific events: an event for

a particular duration could have no more than 10%

missing days. Thus, for durations less than 10 days, no

missing data were allowed. These completeness criteria

are identical to those used by Kunkel and Frankson

(2015) in their study of global precipitation extremes.

The spatial distribution of the 3098 stations that passed

quality and completeness checks is shown in Fig. 1

(bottom panel). Spatial coverage is very good across

most of the United States. A few areas in the western

mountainousUnited States have notably sparser coverage,

such as Nevada, Idaho, Utah, Wyoming, northern

Arizona, and eastern Oregon. The use of a broader

regional aggregation process helps overcome cover-

age deficiencies in the western mountains. The inclu-

sion of regional extreme precipitation for Alaska and

Hawaii was not feasible, given the complex terrain

and sparsity of stations in those states.

The choices of duration and rarity of extreme pre-

cipitation events used for this analysis relate to an im-

portant subset of needs for design of infrastructure that

are used by the civil engineering community and others.

Specifically, the rarity is defined in terms of the frequency

via the ARI or sometimes called ‘‘return period’’ (or

expressed as the ‘‘annual exceedance probability,’’ that

is, the inverse of ARI), with ARI values of 1, 2, 5, 10,

and 20 years being analyzed. Larger values of ARI are

often used in design, but at these ARI values, such as

100 years, sampling uncertainty (noise) makes it difficult

to demonstrate robust trends. Durations were calculated

FIG. 1. (top) The National Centers for Environmental Information climate regions, and

(bottom) the 3098 stations used for extreme-value statistics that passed quality and

completeness criteria. See the text for details. Abbreviations for the regional titles are

Northwest—NW, West North Central—WNC, East North Central—ENC, Northeast—NE,

West—W, Southwest—SW, South—S, Central—C, and Southeast—SE.
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for 1, 2, 3, 5, 10, 20, and 30 days. Therefore, in this

analysis 35 combinations of duration and frequency

were used. Daily observations of precipitation are used

tomaximize the spatial density of stations at the expense

of exploring subdaily extremes. Subdaily precipitation

rates are also of great interest, including the civil engi-

neering community, but at this time the spatial density

of stations with sufficient period of records do not lend

themselves to robust calculation of regional average trends

of rare events. Additionally, compared to the GHCN-

derived daily precipitation data, other subdaily gauge

datasets [e.g., the National Centers for Environmental

Information (NCEI) Hourly Precipitation dataset] have

not had the same level of quality assessments.

Regional aggregated analyses were defined by the

climate regions used by NCEI. The nine NCEI climate

regions (Fig. 1, top panel) are used to summarize many

NCEI products and were originally defined by monthly

mean surface moisture anomalies using the Palmer

drought severity index (Karl and Koscielny 1982; Karl

and Koss 1984) so the regions are strongly tied to pre-

cipitation. Trends and significance were estimated for

each of the 35 combinations within each region. Given

the large interannual variability and nonnormality of

precipitation, especially heavy precipitation, we use the

nonparametric Kendall’s tau to test the trends for statis-

tical significance (Hollander and Wolfe 1973) at the 0.05

level (0.025 in each tail).

The method to compute extreme-event trends is an

empirical approach similar to that used in some recent

studies (e.g., Kunkel and Frankson 2015; Walsh et al.

2014). An annual time series of extreme events was

computed for each station using a peaks-over-threshold

(POT) method (Wilks 2006). So, for a 5-day event with

an ARI of 10 years, we would expect that value to occur

seven times in our 68-yr record (68/10 5 6.8, which

rounds to 7). Therefore, the seven highest 5-day pre-

cipitation events are identified in the time series. Note

that for any given station most years will be zero, some

years will have one event, and it is possible for some

years to have multiple events, but the total number of

5-day events in the time series will be 7. Table 1 lists the

expected number of occurrences for each ARI. To

provide a measure of independence between events, a

2-day separation is required between the end of one event

and the beginning of another. For example, if the highest

5-day, 10-yr ARI total is 7–11 July 1993, none of the other

six events can end after 4 July or begin before 14 July

1993. This process is repeated for each duration/ARI

combination to produce 35 annual occurrence time se-

ries for each station.

To reduce the relatively large interannual variability

of point station measurements, a regionally aggregated

time series from the station time series was calculated.

The goal was to produce a true area-averaged metric

that does not overweight areas with higher-than-average

station density or underweight areas with lower-than-

average station density (Fig. 1, bottom panel). To ad-

dress this, gridcell average time series are first produced

from the station time series. The gridcell average time

series is simply the arithmetic average of all stations

within the grid cell. The size of the grid cell is a function

of the ARI. Less-extreme events (1 and 2-yr ARIs) are

averaged to 28 3 28 grid cells. Events that are the most

extreme (10- and 20-yr ARIs) are much less common

and are therefore aggregated into 68 3 68 grid cells to

support robust trend and significance calculations at the

gridcell scale (Table 1). These grid cells are then ag-

gregated up to the regional (nine climate regions) and a

national level. Given the 9 climate regions, 1 national

aggregation, and 35 duration–ARI combinations, there

are a total of 350 time series for extreme precipitation

analysis and interpretation.

Since the precipitation data could potentially drop out

in a nonrandom manner, a few checks were made to

assess this possibility. Throughout the period of record,

no fewer than 89% of the stations were available, with

the lowest percentage occurring in 1949, a peak to 99%

around 1960, and a slow decay to 89% again around 2010.

This was sufficient to ensure that the number of grid cells

with at least one station does not vary over time by more

than 2%. Because the precipitation data were partitioned

into the cold and warm seasons, checks were made to

assess significant systematic differences in missing data

between seasons. The percent of available station data

during the warm and cold seasons remained within 1%–

2% of each other throughout the period of record.

For each of the annual, the cold-season, and the

warm-season periods, a trend and its statistical signi-

ficance was calculated. For each time series, least

squares linear regression is used to estimate the mag-

nitude of the trends. Linear trends are used as gross

estimate of the direction of change and are not meant

to imply all the trends are linear. To help to protect

against large interannual variability, nonnormality, and

TABLE 1. Relationship between average recurrence interval and

number of events to be identified during the 68-yr period spanning

1949–2016, along with the gridcell size used to aggregate to regions.

Avg return interval

Expected no. of occurrences

in 68-yr period Gridcell size

20 3 68 3 68
10 7 68 3 68
5 14 48 3 48
2 34 28 3 28
1 68 28 3 28
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nonlinearity of the time series conflating statistical

significance, the nonparametric Kendall’s tau is used

to test for significance (Hollander and Wolfe 1973).

Trends were calculated for the full period of record

and a subset period of 1979–2016.

In addition to the extreme-event trends, similar trends

were calculated for total precipitation. The data were

partitioned into seasons s, where s represents aggrega-

tion of the warm or cold season or annually. This enables

assessment of the times of the year that contribute most

strongly to both the annually and seasonally segregated

POT extreme-event trends for each of the ARIs, dura-

tions, and regions. The percent contribution for a spe-

cific extreme metric to the trend of total precipitation

(both extreme and nonextreme precipitation) is given by

d, where

d
ARI,d,s

5 [T(EP
ARI,d,s

)/T(P
s
)]3 100%; (1)

T(EPARI,d,s) is the trend of the amount of extreme

precipitation for a specific average return period,

duration, and season (or seasonless time period), and

T(Ps) is simply the trend of the total precipitation for

the warm or cold season or annually. Values of dARI,d,s

are compared within and across regions. The magni-

tude of dARI,d,s reflects the degree of influence that

extreme precipitation events had on the trend of total

precipitation.

b. Water vapor

The National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–

NCAR) reanalysis (Kalnay et al. 1996) and NASA’s

MERRA-2 reanalysis (Gelaro et al. 2017) were used

to calculate trends (1979–2016 for NCEP–NCAR and

1980–2016 for MERRA-2) of PW. Because the NCEP–

NCAR and MERRA-2 reanalyses have resolutions of

2.58 3 2.58 and approximately 0.58 3 0.6258, respectively,
these resolutions lend themselves to the methods of re-

gional and gridcell averages used here for extreme pre-

cipitation. Wang and Zhang (2008) show standard errors

and biases of radiosonde and GPS measurement of PW

are about 1mm. This is small relative to PW during

extreme precipitation events, which are usually between

about 10 and 75mm.

Although the NCEP reanalysis is available prior to

1979, the homogeneity of the PW trends was paramount.

The homogeneity of the water vapor trends during the

time since 1979 is aided by at least three issues. First,

since 1979 microwave satellite water vapor measurements

have been assimilated into the reanalyses, but prior to this

time theywere not available.Use of longer records dating

back to 1949 can lead to misleading inhomogeneities.

Second, the focus of this analysis is over the United

States and Trenberth et al. (2005) has shown that the

PW from the NCEP reanalysis are reasonable where

they are constrained by radiosondes, unlike the sparser

coverage over the open oceans and during the mid-

twentieth century in the United States. Third, to ensure a

measure of robustness of the PW trends, seasonal and

annual comparisons of PW trends of the two reanalyses

are used to help bound PW trend uncertainties and

provide a central estimate.

Linear trends of the annual and seasonal averages of

PWs, T(PWs), were calculated across the contiguous

United States, including all the regions and nationally.

Seasonal and annual averages were calculated, as op-

posed to averaging the values of PW using only the

dates of the events. This is because of the various 24-h

precipitation accumulation times (1, 2, . . . , 30 days)

used for the large set of stations in this analysis. Many

of the stations used in this analysis are manually read by

observers during the morning or early evening, making it

difficult to be confident of the exact date of precipitation.

As a result, this requires us to assume that the magnitude

of T(PWs) is representative across the full distribution of

PW—for example, that trends in the average are rep-

resentative of trends in the upper end of the distribution.

Although this is likely to be a good rough estimate, and

wehave no reason to believe otherwise; further research—

for example—quantile trends, is warranted to test the

impact of such an assumption.

Using the calculated values of T(PWs) and T(EPs), a

correlation coefficient R was computed using the warm-

and cold-season trends for each region (‘‘reg’’) and each

reanalysis (‘‘rea’’). This resulted in 36 pairs (9 regions3
2 seasons3 2 reanalyses) ofT(PW) andT(EP) that were

cross correlated. The correlation R for each ARI–

duration combination is given by

R
ARI,d

5COV
T(PWs ,reg,rea),T(EPs ,reg,rea)

/S
T(PW)

S
T(EP)

, (2)

where COVT(PW),T(EP) is the covariance of the trends

and ST(PW) and ST(EP) are the standard deviation of

the trends of T(PW) and T(EP), respectively. Given

the expected positive correlation of the two trends, the

statistical significance of the correlation of the trends was

assessed at the 0.01 significance level for a one-tailed test

using a t-test statistic.

3. Results and discussion

a. Total precipitation and trends

Figure 2 shows that there is considerable spatial vari-

ability inT(Ps) andPs. The annual amount of precipitation

increases from the southwest to the northeast. The eastern
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regions of the nation (the NE, SE, C, and S; note that the

abbreviations of all nine regions are explained in the

caption of Fig. 1) are the wettest, with about 20% more

precipitation occurring in the warm season than in the

cold season. In contrast, most regions in the western half

of the United States have less than one-half of the pre-

cipitation of the four wetter regions, with the NW and

ENC regions falling between these extremes. Outside

the four eastern regions there are strong seasonal cy-

cles, with 2–3 times as much precipitation falling in

the wet season. This occurs during the cold season for the

NW and W regions and during the warm season for the

SW, ENC, and WNC.

The largest andmost significant positive values ofT(Ps)

occur in the three most northerly regions (excluding the

NW) and the C region, and this result is largely attributed

to trends in the warm season. Seasonal decomposition of

the trends of PWwill provide insights regarding potential

causes of the increase. With the exception of the W re-

gion, all other regions also have positive values of T(Ps),

but few are statistically significant even though the mag-

nitude and percent of the positive trends in the SW, S, and

SE are substantial.

b. Extreme precipitation trends for an example region

Figure 3 shows the T(EP) for the 35 duration–frequency

combinations in the NW region. The 5-day, 10-yr ARI

has a trend of 21% per decade and it is not statistically

significant. The 1-day, 20-yrARI is increasing at a rate of

8% per decade and is statistically significant in contrast

to the decreasing trend of27%per decade for the 10-day

duration. Thus the 1-day heavy precipitation events that

typically occur once in a generation are occurring more

frequently, while the 10-day duration events for the same

recurrence interval are decreasing. Given the variability

of the trends for the 20-yr recurrence interval, caution

is needed when interpreting cell-to-cell variations for

specific durations and ARIs. Rather, a more general

assessment requires consideration of the broad patterns

that emerge from the set of ARIs and durations. These

broader patterns are much more likely to reveal signals

with physical significance as compared with the noisier

trends of that can arise for an individual region, dura-

tion, and ARI.

c. Annual trends of the extremes across the regions

The year-by-year annual time series of the 5-day,

10-yr ARI (Fig. 4) further illustrate the perils of em-

phasis on any single metric for extreme precipitation.

The time series in Fig. 4 display considerable variability

from year to year within each region and this can mask

or imitate trends. The peril is less at the national level

where the interannual variability is smaller due to

spatial aggregation, but the practical use of this infor-

mation at the national level of aggregation is less useful.

In the analysis in this paper, with 350 precipitation

metrics and 3 times that number with the annual and

two seasons, the interpretation of the results will be

heavily based on the preponderance of consistent trends

within and among the tables.

FIG. 2. Precipitation climatology statistics for the nine regions and the United States as a whole; P is the average

precipitation without regard to season (label A for annual) and for the warm (label W) and cold (label C) seasons,

T(P)mm is the linear trend [1949–2016; mm (10 yr)21], and T(P)% is the trend in percent per decade of the total

[T(P)mm/P] 3 100%. Statistically significant trends in a two-tailed test are noted by an asterisk.
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As depicted in Fig. 5a there are notable spatial and

temporal patterns of T(EP). A striking feature of the

pattern in Fig. 5a is the gradient from west to east of the

sign and magnitude of the trends. There are large posi-

tive trends in the six regions: NE, SE, S, C, ENC, and

WNCwhere the NE and C regions have more than 30 of

the 35 trends statistically significant. Positive trends of

5% to 15% per decade are common in these areas with

some as high as 15% to 20% per decade in the NE. This

is in contrast to the two westernmost regions, the NW

and W, where mixed trends of extreme precipitation

events are evident.

The magnitude and significance of the positive trends

increase as the events become rarer (e.g., a 1-yr re-

currence interval vs a 20-yr recurrence interval), as can

be readily discerned in Fig. 5a by the deeper shades of

green in the top rows versus the lower rows. This is most

obvious in the national aggregate. This characteristic is

ubiquitous across the United States. It is noteworthy that

despite the widely different signs and magnitudes of the

trends moving from west to east, the same tendency ap-

pears in all regions with the trends of rarer events being

of greater magnitude and more statistically significant.

This is suggestive of a nonlinear impact of changes in

dynamics or thermodynamics affecting extreme pre-

cipitations events. Over the last several decades (since

1979), the trends in Fig. 5b reveal patterns that are

very similar to the earlier start date of 1949 (Fig. 5a).

d. Trends of the extremes during the warm and
cold seasons

In general, with the exception of the NW, W, and S

regions, positive values of T(EPs) are substantially larger

and best reflected during the warm season regardless of

starting date when compared with the cold season (Figs. 6

and 7). Even for regions such as the NE and SEwhere the

Pcold approaches that of Pwarm (within 15%–20%, Fig. 2),

the values of T(EPwarm) are substantially larger than

the T(EPcold). In the W and NW, both cold- and warm-

season trends are mixed, albeit the magnitude is higher

in the cold wet season. In the S, the warm- and cold-

season T(EPwarm) and T(EPcold) are not substantially

different. Within each season the relative magnitude

(in percent) of the T(EPs) tends to vary similarly to

the magnitude and sign of T(Ps). This is suggestive of a

common factor, such as PW, affecting precipitation

intensities from light to extreme.

e. Comparative analysis of the trends in extreme and
total precipitation

For all regions with the exception of the NW and W,

the relatively high values of d means that T(EP) is re-

sponsible for a significant proportion of T(P) (Fig. 8). A

distinguishing difference between d and T(EP) (Fig. 5)

is the juxtaposition of the large values of the trends for

the short versus the long ARIs. This is because the trends

of the more frequent extreme precipitation events con-

tribute much more to the total trend, despite the fact the

trend in the number of occurrences of the events is less.

Spatially, T(EP) is an increasingly larger fraction of T(P)

moving west to east where T(EP) is more significant.

Another clear characteristic is the generally larger values

of d for longer durations and less rare events where over

50% of the total precipitation trend is often observed for

the extrememetric of 30 days with an average recurrence

interval of 1 year. This is attributable to the greater ac-

cumulation of precipitation at 30 days versus fewer days

and the greater number of events. Arguably, however,

what is most notable in Fig. 8 is the relatively large values

of d even for the short-duration events, for example, 1,

2, and 3 days with 1-yr recurrence interval. Here, about

one-third ofT(P) is contributed byT(EP). Thismeans that

these short-duration extreme events that occur on av-

erage every year have a disproportionately large influ-

ence on T(P). This is ubiquitous for all regions [where

T(P) exceeds 1mm (10 yr)21] including the NW where

d has mixed signs depending on the duration of the

events. The importance of d for the rarest event studied,

1 in 20 years, is still noteworthy where 5%–30% of T(P)

FIG. 3. Trends (percent per decade) in the frequency of oc-

currences for the NW region during the 1949–2016 period for the

35 duration–ARI combinations. Decreasing trends are displayed

in shades of brown, and increasing trends are displayed in shades

of green. Statistically significant trends are shown in red-colored

numbers (0.05 significance level for a two-tailed test). See the text

for details.
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is explained by T(EP) for most regions. These results

suggest that it is very important to understand the causes

of the T(EP) if T(P) is to be fully explained. This would

be consistent with the notion that T(EP) is more sensitive

to trends of other variable(s) when compared with events

with less precipitation. Trends in PW is a candidate.

The seasonal decomposition of the seasonless results

for d is very different for the warm (Figs. 9a,b) versus the

cold seasons (Figs. 10a,b). The larger contribution of

T(EPs) toward T(PAnnual) in the warm season versus the

cold season is clearly evident in these two figures. The

magnitude of d and the greater frequency of its statistical

significance in the warm season reflects this character-

istic. Nationally, even though the average precipitation

in the warm season is only 20% higher than the cold

season and the value of T(Pwarm) is about 2 times that

of T(Pcold), the values of d are often 5–10 times as

large. With few exceptions, the warm-season extremes

are disproportionate in their influence on T(P) relative to

the cold season in all regions depicted in Figs. 9 and 10.

A comparison of Figs. 9b and 10b where the numerator

and denominator of d take on the same season shows

some remarkably large values of d. For example, in the

SE during the warm season large values of d are found

for all event durations and rarity, ranging from aminimum

of 22% to a maximum of 98% of T(Pwarm) accounted for

by T(EPwarm). Substantially smaller and less significant

d values are generally found in the cold season. Larger

values of d during the warm versus the cold season are

reflected in the frequent occurrence of values of d ex-

ceeding 50%during the warm season and virtually absent

during the cold season. Althoughmuch less influential on

T(Pcold) relative to the warm season, on a national scale

T(EPcold) still plays a substantial role on the positive

values of T(Pcold) as depicted by about one-third of

the values of dcold exceeding 15%.

f. Assessing the similarity of extreme precipitation to
water vapor trends

Weather and climate model studies have identified

a variety of potential factors that influence model-

generated extreme precipitation rates, and water vapor

has been shown to be a key contributor (Nie et al. 2018;

O’Gorman and Schneider 2009; Kitoh and Endo 2016;

Bao et al. 2017; Thackeray et al. 2018; Giorgi et al. 2019).

Kunkel et al. (2013) have presented the case for the

design storm dependencies on large amounts of water

vapor as a key forcing factor for extreme precipitation

events, and water vapor is expected to increase sub-

stantially as the climate warms (IPCC 2013). Seager

et al. (2015) have already shown that, over the period

1960–2013, the observed surface water vapor pressure

FIG. 4. Regional annual counts (peaks over threshold) time series for the combination of 5-day duration and 10-yr ARI averaged across

the nine NCEI regions as well as the national time series. The units are number of events per station per year. The horizontal dashed line

represents the long-term average.
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FIG. 5. As in Fig. 3 (annual trend), but for each of the nine NCEI regions as well as a national aggregation (shown in

the lower left of each panel) for (a) 1949–2016 and (b) 1979–2016.

JANUARY 2020 KUNKEL ET AL . 133

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/59/1/125/4914917/jam

c-d-19-0185_1.pdf by guest on 22 July 2020



FIG. 6. As in Fig. 5, but for warm-season (May–October) trends.
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FIG. 7. As in Fig. 5, but for cold-season (November–April) trends.
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is increasing in many areas of the United States and is

increasing more during the warm season than during

the cold season in much of the northeastern two-thirds

of the United States. This section focuses on the re-

lationship between the trends of total column water

vapor (PW) with the frequency of extreme events for

the ARIs and durations used in this study during the

period 1979–2016 in context with previous work re-

lated to trends in weather events associated with ex-

treme precipitation.

Figure 11 reveals considerable agreement in T(PW)

betweenNCEP–NCARandMERRA-2. Both reanalyses

generally show upward trends of T(PW), although

MERRA-2 shows stronger and more spatially uniform

trends. This is most evident during the warm season

(Fig. 11c vs Fig. 11d) when the upward trends of T(EP)

are highest. Both reanalyses show decreases of T(PW)

in the SW during the cold season, but NCEP–NCAR

also has downward values of T(PW) along the East

Coast in contrast with upward trends in MERRA-2.

The downward trends of NCEP–NCAR during the cold

season aremore consistent with themixed and downward

values of T(EP) in the NE and SE, respectively. None-

theless, on this basis alone it is not possible to assesswhich

reanalysis better represents T(PW).

Across the nine regions, T(PW) and T(EP) are posi-

tively correlated across all ARIs and durations as shown

in Table 2. As expected, all of the correlations are pos-

itive and are also statistically significant at the 0.01 level.

This clearly indicates that PW is a key factor in explaining

the T(EP). In addition, there is discernable pattern in the

magnitude of the correlations. They are higher across all

ARIs for short-duration events and lower across all

the ARIs for long-duration events, for example, 1 day

versus 30 days. This is opposite to what might have

been expected becauseT(PW) represents the seasonal

average as opposed to the trend during the events. This

suggests that there are other factors affecting T(EP) that

are time-duration sensitive. We postulate that the per-

sistence of large-scale circulation patterns and synoptic

weather events is increasingly important as duration time

increases and that feedback effects of water vapor such

as vertical velocity and latent heat of condensation are

disproportionately important for short-duration extreme

precipitation events.

The work of Kunkel et al. (2012) provides a basis for

further investigation of the causes of the decrease inR as

the durations increase as well as helping to explain the

unexplained variance in the relationships between T(PW)

with T(EP) across the regions. Kunkel et al. (2012) show

FIG. 8. Values of dARI,d,annual, with red denoting statistical significance of T(EP) at the 0.05 level. The rotated numbers to the right of each

table are annual values of T(P) [mm (10 yr)21]. The West regional table is blank because T(Pannual) is near zero.

136 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 59

D
ow

nloaded from
 http://journals.am

etsoc.org/jam
c/article-pdf/59/1/125/4914917/jam

c-d-19-0185_1.pdf by guest on 22 July 2020



FIG. 9. As in Fig. 8, but for the warm season for the ratios (a) T(EPwarm)/T(Pannual) and (b) T(EPwarm)/T(Pwarm).
The rotated numbers to the right of each table are the values [mm (10 yr)21] ofT(Pannual) in (a) andT(Pwarm) in (b).

Blank regional tables represent near-zero values of T(Pannual) or T(Pwarm).
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FIG. 10. As in Fig. 9, but for the cold season.
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from a climatological perspective that extratropical

cyclones (particularly those associated with fronts)

and tropical cyclones are key factors related to ex-

treme precipitation events with varying degrees of

impact in the warm and cold seasons. Their analysis

examined the same nine regions of the United States

used here and an ARI of 1 in 5 years for extreme

precipitation but focused on trends during the years

1895–2009, confounding any direct comparison with

the trends identified in this analysis. Nonetheless,

Kunkel et al. (2012) identified statistically significant

trends of weather types associated with extreme pre-

cipitation that vary with region and season. This sug-

gests that a more comprehensive accounting of changes

in extreme precipitation events will require knowledge

of both changes in PW as well as changes in the in-

tensity, speed, and frequency of weather types by sea-

son and region.

FIG. 11. Least squares trends in water vapor in percent per decade from the (left) NCEP–NCAR and (right) MERRA-2 reanalyses for

(a),(b) annual, (c),(d) the warm season, and (e),(f) the cold season.
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4. Conclusions

There are several insights that can be drawn from this

analysis. Nationally, trends are upward for all 35 com-

binations of 1-day to 1-month durations and 1–20-yr

ARIs for both the frequency of extreme events and the

proportion of total precipitation contributed by the ex-

treme events. There is relatively smaller variability with

event duration in contrast to ARIs. This is especially

evident for the trends of extreme precipitation frequency,

but it is also evident for the proportion of total precipi-

tation attributed to the extreme events. The trends for

the frequency of extreme events are largest for ARIs of

20 years, the rarest event considered here. They are

about double the trends for the small ARI value, for

example, 1 year. This makes it difficult to generalize the

magnitude of the trends of very rare events given trends

of less rare events. This has important implications for

long ARI design values derived from stationary and even

nonstationary statistics when based on historically ob-

served extreme events. ARIs beyond 20 years were not

analyzed here because of insufficient sample size to as-

sess robust regional trends, but since the trends of ex-

treme precipitation events increased as ARIs increased,

trends of extreme events with ARIs beyond 20 years

may be even stronger.

There is considerable spatial and temporal variability

of the extreme precipitation trends and they can vary

with the chosen extreme precipitation ARI and dura-

tion. This occurs for both the trends in the frequency of

extreme precipitation events as well as the proportion of

total precipitation accounted for by the extreme events.

Moving from the West Coast to the East Coast, there is

a pattern of increasing trends in both the extremes and

total precipitation, but the former is amplified by com-

parison. The largest positive trends of the extremes were

found in the NE, ENC, and C regions with virtually all

trends statistically significant. By contrast, the NW region

has slightly over one-half of its trends negative and a few

statistically significant. Without seasonal decomposition,

for every region the 1-, 2-, and 3-day durations for 1-yr

ARIs are increasing, and, despite their short duration,

these events contribute to one-third of the trend in total

precipitation. This result implies that understanding

the causes of short-duration extreme precipitation trends

is important if total precipitation trends are to be fully

explained. Similarly, for 30-day duration events, on aver-

age;60% of the total precipitation trend is attributable

to thewettest 30 days of the year with asmuch as;100%

in the NE.

From a seasonal perspective, the warm season has

larger andmore significant trends of extreme events. It is

the time of the year with the largest and most significant

trends of both extreme-event frequency and the propor-

tion of total precipitation attributed to extreme events.

This occurs even in areas where the cold- and warm-

season precipitation are nearly equal. This highlights the

importance of seasonally decomposing trends. It is also

noteworthy that the warm season is the time of year with

the highest values of PW, the largest upward trends and

the most spatially coherent increases in PW. PW clearly

plays a key role in the amount of precipitation observed

in the upper tail of the precipitation distribution.

The cumulative causes of the upward trends in extreme

precipitation in the United States are becoming clearer.

On a global scale, it has been concluded that the upward

trends in precipitation extremes are strongly affected

by a warmer world through increases in water vapor (or

PW) (IPCC 2013) and various other atmospheric fac-

tors (Kitoh and Endo 2016; Nie et al. 2018). Observa-

tional results here show that the trends of PW are an

important seasonal and regional factor contributing to

the observed change in extreme precipitation events.

Other factors operating in the United States outlined

by Kunkel et al. (2012) point the way to further trend

analysis to better understand of the causes of the in-

crease in extreme precipitation events, namely, frontal

activity and extratropical and tropical cyclones. Because

of the systematic decrease in the positive correlation

of the trends of PW with extreme events for longer

durations it will be important to examine the trends

of the persistence as well as the intensity and fre-

quency of extreme-event synoptic weather types at

the regional level. In addition, atmospheric and oce-

anic teleconnections can also be relevant, for exam-

ple, forcing by sea surface temperatures (Hoerling

et al. 2016). As global temperatures rise, PW will in-

crease inmany regions per Clausius–Clapeyron (Kunkel

et al. 2013). How this additional water vapor manifests

itself seasonally, regionally, and within important synoptic

weather and climate events (e.g., frontal, extratropical

and tropical storms) will need to be comprehen-

sively evaluated, both in terms of storm dynamics and

thermodynamics.

TABLE 2. Correlation coefficients (3100) of T(PW) and T(EP)

across all nine regions and the warm and cold season for all com-

binations of ARI and duration (1–30 days). All correlations are

statistically significant at the 0.01 significance level.

ARI

(yr) 1 day 2 days 3 days 5 days 10 days 20 days 30 days

20 64 59 55 52 45 46 51

10 66 61 58 54 52 43 47

5 64 62 59 55 51 44 47

2 63 61 58 55 48 46 48

1 62 58 55 52 48 47 49
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The results of this work provide evidence that struc-

tures designed using precipitation statistics for a station-

ary climate are at risk of underdesign, especially for the

most extreme rainfall rates examined here (1 in 20 years).

The extreme precipitation design values that are com-

monly in use today, such as those provided in theNOAA

Atlas 14 series (e.g., Bonnin et al. 2004), are based on

the assumption of a stationary climate. Recognizing that

many of those design values extend well beyond the 20-yr

ARI used here, to the extent that sizable upward trends

of the ARIs were found to increase as the ARIs be-

came larger, peaking at the largest ARI analyzed, there

is cause for concern. As PW increases with a warming

climate, users of the NOAA Atlas 14 series would be

well served by explicitly incorporating nonstationarity

in future Atlas updates.
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